Modeling and Auralization:

Past and Progress

Kurt Graffy

But first, a bit of history, from 27 years ago:

6th AES Conference on Sound Reinforcement Nashville, Tennessee May 1988

And the software buzz then was:

6th AES Conference on Sound Reinforcement Nashville, Tennessee May 1988

6th AES Conference on Sound Reinforcement Nashville, Tennessee May 1988

Figure 2. - Speaker Model Window showing the speaker selection list and a three dimensional view of the loadspeake

Figure 4 - Physical Data Window showing surface materials and their associated octave band absorption coefficients.

e 14 - Color solid showing placement of components before vector summation.

re 16 - Example of early reflections, and extrapolated late exponentall decay (top) and varous times used for lation

BOSE Modeler

6th AES Conference on Sound Reinforcement Nashville, Tennessee May 1988

<u>Not at</u> the 6th AES Conference on Sound Reinforcement Nashville, Tennessee May 1988

A mere 10 years later....

Here's what was going on...

Auralization for new LA Cathedral:

7

Cathedral of Our Lady Of Angels, Los Angeles - 1998

Cathedral of Our Lady Of Angels, Los Angeles - 1998

Cathedral of Our Lady Of Angels, Los Angeles - 1998

The Cathedral of Our Lady of the Angels

The next step in the process is to select a sound source and then one of the listening positions. The floorplan above shows the listening locations and the arrows show the direction that the listener is facing. As you place your mouse over the listening positions below the image above will change to show you the view from those positions.

Unaided Talker	Pewback System	Split Clusters
<u>Chancel</u>	<u>Chancel</u>	<u>Chancel</u>
<u>Transept</u>	<u>Transept</u>	<u>Transept</u>
<u>Nave Front</u>	<u>Nave Front</u>	<u>Nave Front</u>
<u>Nave Middle</u>	<u>Nave Middle</u>	<u>Nave Middle</u>
<u>Nave Rear</u>	<u>Nave Rear</u>	<u>Nave Rear</u>

About the Recommended Room Acoustics

Volume is 3,247,000 cubic feet or 1,080 cubic feet per seat

Cathedral of Our Lady Of Angels, Los Angeles

What we had to do to create the IR for Auralization: Computer Farm! (5) Computers @300 MHz 1 computer per listener location Computers were on UPS, running 24/7 for 5 weeks to generate impulse responses

1998 Our Lady Of Angels Cathedral Los Angeles

Preparation:

Room model "built" and "skinned". Impulse Reponse generated for: Five Listener Locations Each listener location was modeled with 3 different sources Human talker, Distributed Arrays, Pewback system Each listener location modeled with 3 different acoustical conditions No Treatment, Current Treatment, Recommended Treatment

Presentation to the Cardinal and Architect:

Impulse Reponse fed Lake Huron Convolver BUT Huron did not have enough taps for the length of the IR! Consequently Convolved IR was fed through Lexicon 480 to develop the reverberant tail necessary for the decay time. Convolution was "live" via a live talker (KMG) on wireless microphone Listeners heard "real-time" binaural auralizations via IR wireless headphones No acoustic "time zero" so latency effects negated.

So just Build 'em, what Could Be Simpler?

Perhaps just a few things...

5 Key Things to Consider

- 1. Level of Detail to Use
- 2. Application / Approach to Diffusion/Diffraction
- 3. How to handle frequencies below 125 Hz (below Schroeder)
- 4. Mapping Patch Size, Length of Echogram re Room
- 5. Note: GA Prediction methods are best suited to investigate main impacts of room size and shape...and distribution of absorbing and diffusing surfaces.
- 6. And oh yeah....Level of Detail to Use

Modeling - What Level of Detail?

Schematic Curve of: Model Complexity vs Geometric Acoustic Accuracy

Modeling - Detail and Realization

One can consider Geometric Acoustics (GA) Applicable if:

- The wavelength λ is much smaller than smallest dimension of the surface (d)
 - Such that $\lambda \ll d$
- In practice this expanded to be simply $\lambda < d$
- But...what's crept in now are claims like:
 - Detailed geometry is relevant, and will provide diffusion
 - LF where $\lambda \gg d$ can be modeled with GA

Modeling - Detail and Realization

So. Let's Consider the Two Claims regarding Detail and Diffusion:

- With sufficient modeling of detail the diffusing effect of surfaces can be generated, versus
- Use Frequency Dependent Scattering (FDS) coefficients on flat surface and omit the details

How does that work out?...how does it compare to a measured "real-world" situation?

Modeling - Detail and Realization

Consider Two Claims regarding Detail:

(c) EASE 4.4 / EASE Hall / 7/14/2015 8:00:19 PM / Arup Acoustics Kurt M Graffy

STAGE LEFT ARRAY ONLY

STAGE RIGHT ARRAY ONLY

IMPACT OF FORESTAGE SCREEN FRAME ON 3RD BALCONY COVERAGE ORIGINAL ARRAY LOCATIONS

FORESTAGE SCREEN FRAMING IN PLACE

NO FORESTAGE SCREEN FRAMING

IMPACT OF FORESTAGE SCREEN FRAMING ON 3RD BALCONY COVERAGE ORIGINAL ARRAY LOCATIONS

MAPPING OF AUDIO INTENSITY ON FORESTAGE SCREEN FRAMING

STAGE LEFT ARRAY ONLY

STAGE RIGHT ARRAY ONLY

BLACK AREAS ARE OCCLUDED BY FORESTAGE SCREEN FRAMING

AREAS OF FORESTAGE SCREEN FRAMING OCCLUDING UPPER ARRAYS

ORIGINAL ARRAY LOCATIONS

Modeling - Measured vs Modeled

Table 2. Facts associated to measurements and simulations.			
Facts	Measurements	Simulations	
Room geometry	Fully included by definition	Approximated	
Alteration of room geometry	Difficult	Easy	
Wave phenomena (phase in-	Fully included - inherent in	Approximated with varying	
formation, diffraction)	the real sound field	accuracy	
Wall properties	Fully included – inherent in the real room	Absorption - scattering coeffi- cients have to be measured or estimated, with limited accu-	
	Fully included but may vary	racy	
Air absorption (a function of temperature and humidity)	significantly in different measurements	Calculated, but very accurate	
Source directivity	Not perfect: Lobes at high frequencies	Perfectly omni-directional	
Dynamic range of source	Insufficient at very low and very high frequencies. Distortion at high levels	Unlimited dynamic range at all frequencies. No distortion	
Calibration of source	Special procedure needed for the strength parameter, G	Perfect per definition	
Background Noise	Limits the dynamic range, compensation necessary	Not present	
Microphone directivity	Omnidirectional microphone. Some parameters require fig- ure-of eight pattern or a dum- my head	All directivities available	
Results in octave-bands	Filtering is required, which alters the original signal	Results are derived directly in different bands - no alteration due to filtering	
Onset time of impulse re- sponse	Critical, especially at low fre- quencies	Perfect per definition	
Reproducibility	Not perfect: Depends heavily on the source	Can be perfect, depending on the algorithm	
Influence of operator	Knowledge and experience important	Knowledge and experience very important	

Table 2. Facts associated to measurements and simulations.

"Simulations, Measurements, & Auralizations in Architectural Acoustics", Rindel, et al_Acoustis2013

Snell's law: $\theta_r = \theta_i$

Lambert's law: Probability of diffuse reflection is $\sim \cos \theta_r$

Sound scattering coefficient, s

- defined as the ratio between the acoustic energy reflected in non-specular directions and the totally reflected acoustic energy
- A sound scattering surface is defined as a surface with s ≥ 0.5

Convex and concave surfaces

Irregular geometric structure

Periodic geometric structure

Alternating absorbing and reflecting structure

Types of diffusers

- Geometric diffusers
 - Simple curved surfaces
 - Irregular geometric structures
 - Periodic geometric structures
 - Mixture of absorbing and reflecting materials

- Mathematical diffusers
 - MLS (Maximum Length Sequence) diffusers
 - QRD (Quadratic Residue Diffusers)
 - PRD (Primitive Root Diffusers)
 - Fractal diffusers
 - Curved diffusers

Scattering Coefficients

Table III. Collection of the scattering coefficients (in ODEON) used in the acoustical models.

Scattering coefficient	Description of the surface
$\begin{array}{c} 0.1, \ldots, 0.19 \\ 0.2, \ldots, 0.39 \\ 0.4, \ldots, 0.59 \\ 0.6, \ldots, 0.89 \\ 0.9, \ldots, 1.00 \end{array}$	large, plain surfaces large partially fitted surfaces small or fitted surfaces large densely fitted surfaces small densely fitted surfaces

Figure 1: Example on combined scattering coefficients at 1000 Hz used in the Elmia hall, data was provided to participants in the 2nd Round Robin.

Guide to scattering coefficients

The scattering coefficient s should be chosen from depth of the structure and from the width of the surface.

The suggested graphs may be used as a rough guide.

The higher of the two values should be used for *s*.

"Simulations, Measurements, & Auralizations in Architectural Acoustics", Rindel, et al_Acoustis 2013

Modeling - Diffraction

Screen-based formulas:

Geometric Theory of Diffraction (GTD)

Uniform Theory of Diffraction (UTD)

"As all GA models, assumes edges to be large compared to the wavelength"

Good model for environmental noise, where barriers approach infinite relative to $\boldsymbol{\lambda}$

Poor approximation of most room acoustics conditions, like:

Reflectors, Office partitions, Orchestra Pits

"Whitepaper regarding diffraction (v5) for prediction using CATT-Acoustic v9.0c and higher", BI Dalenback

Modeling - Diffraction

Secondary Edge Sources – CATT

Biot-Tolstoy Medwin/Huygens/Svensson

Frequency, time and directivity of diffracted component encoded in secondary
edge IR (screen-based models assume a frequency-dependent pulse)
Diffracted component included in receivers on local side of edge (which is true!)
No practical limitation of edge length, S/R angle/location, panel size
As a bonus, CATT adds source directivity + absorption profile to the mix

"Whitepaper regarding diffraction (v5) for prediction using CATT-Acoustic v9.0c and higher", BI Dalenback

Modeling - Diffraction

"With the 5° approximation the correct behavior is in this example achieved up to about 1 kHz while for higher frequencies the approximation is not sufficient and sectors will be seen (but no gaps like with specular-only - just weaker reflections). However, unlike the purely specular GA case, with the SES method it in this case helps to use a better approximation and using 2.5° will roughly double the frequency to 2 kHz where a more correct smooth reflection will be achieved."

"Whitepaper regarding diffraction (v5) for prediction using CATT-Acoustic v9.0c and higher", BI Dalenback

Modeling -Diffraction

BUT...is the difference significant enough to justify the increased time?

- 40k rays
- 1s IR Time
- 2nd algorithm
- 2nd order diffraction
- 9 sources
- 4 receivers
- 40 Hours

- 40k rays
- 1s IR Time
- 2nd algorithm
- 2nd order diffraction
 - 5 sources
- 4 receivers
- 12 Hours

- 40k rays
- 1s IR Time
- 2nd algorithm
 - No diffraction
- 5 sources
- 4 receivers
- 12 Hours

- 80k rays
- 1s IR Time
 - 1st algorithm
- 2nd order diffraction
- 5 sources
- 4 receivers
 - 2 Hours

Auralisation

Phrase coined by Mendel Kleiner of Chalmers University:

 "Auralization is the process of rendering audible, by physical or mathematical modeling, the sound field of a source in a space, in such a way as to simulate the binaural listening experience at a given position in the modeled space."

"Auralization – An Overview", Kleiner et al, JAES, Vol 41, No 11, 1993 November

Auralisation - Arup SoundLab

Auralisation - Methodology

Auralisation - Arup SoundLab

Site Acoustic Measurements

Convolve with Anechoic Recording

Listen

Data from 3D Acoustic Model

Convolve with Anechoic Recording

ARUP

Listen

Auralisation - Monaural

Auralisation - Stereo / Transaural

Auralisation - 5.1/7.1 Surround

Auralisation - Ambisonic

Arup SoundLab SF- Loudspeaker Layout

ioliwSoundLab SF-Hardware

SoundLab - Software

OMAX6

Auralisation - Ambisonic

Auralisation - B-Format to Ambisonic

Time Information - 4 channel

Spatial Information - Very Frontal

Spatial Information - Better Hall

Northrop - Original Hall

Northrop - Model at Close of DD

VANCOUVER CONVENTION CENTRE

BALLROOM THEATRE • SOUNDLAB AURALIZATION

ADD THEATRE "SET" WITHIN ACOUSTICS OF EXISTING BALLROOM: ACOUSTICAL IMPACTS?

NEW STAGE/SEATING "SET" INSIDE BALLROOM

PERFORMANCE AUDIO SYSTEM DESIGN

COVERAGE FOR ALL SEATING FROM MAIN ARRAY

SITE ACOUSTIC TESTING

DODECAHEDRON + SUBWOOFER

RECORDING + ANALYSIS

- REFERENCE MICROPHONE - SOUND LEVEL METER - SOUNDFIELD MICROPHONE

CALIBRATE MODEL TO SITE MEASUREMENTS

ORAPERY

SOLID LOWER WALL AREA

ONE INCH ACOUSTIC PANEL (BEHIND SLATTED WOOD)

OPERABLE WALL PANELS

O CARPET

CALIBRATE BALLROOM ACOUSTIC MODEL TO SITE MEASUREMENTS

CALIBRATE BALLROOM ACOUSTIC MODEL TO SITE MEASUREMENTS

ADD THEATRE TO BALLROOM ACOUSTIC MODEL

COMPLETED ROOM ACOUSTIC MODEL

CALIBRATE BALLROOM ACOUSTIC MODEL TO SITE MEASUREMENTS

LISTENING POSITIONS

THE END THANK YOU

